Infrastructure Revenue Bond for Sustainable Growth

Naoyuki Yoshino Dean, Asian Development Bank Institute, ADBI Professor Emeritus of Keio University アジア開発銀行研究所長/慶應義塾大学名誉教授

Sustainable Growth

- 1. Domestic Savings → Investment
- 2. Human Capital Development (Secondary School, University Education)
- **3. Infrastructure investment**
 - Long term investors: Insurance & pension funds
- 4. Connectivity creates stronger effects
- 5. Private finance will create flexibility

Forthcoming Book on Infrastructure

"FINANCING INFRASTRUCTURE IN ASIA: Capturing Impacts and New Sources"

Edited by Naoyuki Yoshino, Matthias Helble, and Umid Abidhadjaev

- the latest evidence on the impact of infrastructure investment on economic and social indicators
- country studies on how infrastructure investment can increase output, taxes, trade and firm productivity
- innovative modes of infrastructure financing
- DOWNLOAD FOR FREE: https://www.adb.org/publications/financinginfrastructure-asia-capturing-impacts-and-newsources

FINANCING INFRASTRUCTURE IN ASIA

ADDIDGE

Capturing Impacts and New Sources

Infrastructure Investment Needs in Asia-Pacific (2016-2030)

(\$ billion in 2015 prices, annual average)

	Baseline Total	% of GDP	Climate Adjusted	% of GDP
Central Asia	33	6.8	38	7.8
East Asia	919	4.5	1071	5.2
South Asia	365	7.6	423	8.8
Southeast Asia	184	5.0	210	5.7
The Pacific	2.8	8.2	3.1	9.1
Asia & Pacific	1503	5.1	1744	5.9

Source: Meeting Asia's Infrastructure Needs, ADB (2017)

Infrastructure Investment Needs by Sector, 2016-2030

(\$ billion in 2015 prices, annual average)

	\$ billion	% share to total	Adaptation (\$ billion)	Mitigation (\$billion)
Power	982	56.3	3	200
Transport	557	31.9	37	-
Telecommunications	152	8.7	-	-
Water and Sanitation	23	3.1	1	-
Total	1744	100	41	200

Source: Meeting Asia's Infrastructure Needs, ADB (2017)

Spring 2017 Vol.1/No.2

NOMURA JOURNAL OF ASIAN CAPITAL MARKETS

es. The difference-in-difference method

(Yoshino and Abidhadjaev (2017), Yoshino

and Pontines (2015a, 2015bi) can be used

to compute the effect of spillovers on tax

revenues in places where infrastructure

investment occurred compared to ones

where no infrastructure investment took

place. A study by Yoshino and Abidhad-

jaev (2016) shows that good educational

opportunities together with infrastruc-

ture investment crnate guidified workers

who enhance regional productivity. In the

past, all these tax revenues were collect-

ed by the government and not returned

Attract Private Financing to Infrastructure Investment by Injecting Spillover Tax Revenues

Need for Infrastructure Investment

n Southeast Asia, USD 8 hillion in infrastructure investments are implemented every year. However, it is expected that USD 210 billion infrastructure investment is needed every year. Public money is insufficient to satisfy Asia's infrastructure needs. In many developing countries in Asia, we observe heavy traffic congestion in cities highways, trains and various modes of public transport are lacking, Public-Private Partnerships (PPPo) have been promoted for infrastructure development in India. Thailand and other places in Asia. However, most PPP projects were disappointing since the rate of return on infrastructure depends mainly on user charges, such as train fares and highway tolls. When the region was hit by economic crisis after the Lehman shock, the private sector withdrew from infrastructure inventment. Risks associated with infrastructure were so large that private investors. were besitant to put their money in infrastructury.

It is well known that good infrastructure creates huge spillover effects in the

region around a project (Figure 1), Railways will bring manufacturing factories into the region by making the shipping of products faster and safer. Railways can connect manufacturers to markets and to porta. New industry creates jobs in the region. Eventually, service sector businesses such as restaurants and hotels will be constructed to meet the increased demand in the region. Farmers and small businesses can sell their products at the train stations. The spillover effects of infrastructure investment will increase revenues

from corporate, income, and property tax-

Figure 1: Schemes of Spillover Effects of Infrastructure Investment

$$\ln Y - \ln \overline{Y} = \alpha_0 + \alpha_K (\ln K_P - \ln \overline{K_P}) + \alpha_L (\ln L - \ln \overline{L}) + \alpha_G (\ln K_G - \ln \overline{K_G}) + \beta_{KK} \frac{1}{2} (\ln K_P - \ln \overline{K_P})^2 + \beta_{KL} (\ln K_P - \ln \overline{K_P}) + \beta_{KG} (\ln K_P - \ln \overline{K_P}) (\ln K_G - \ln \overline{K_G}) + \beta_{LL} \frac{1}{2} (\ln L - \ln \overline{L})^2 + \beta_{LG} (\ln L - \ln \overline{L}) (\ln K_G + \beta_{GG} \frac{1}{2} (\ln K_G - \ln \overline{K_G})^2 + \epsilon dY = \frac{\partial Y}{\partial K_G} dK_G + \frac{\partial Y}{\partial K_P} \frac{dK_P}{dK_G} dK_G + \frac{\partial Y}{\partial L} \frac{dL}{dK_G} dK_G$$

	1956-60	1961-65	1966-70	1971-75	1976-80	1981-85
Direct effect	0.696	0.737	0.638	0.508	0.359	0.27
Indirect effect(Kp)	0.452	0.557	0.493	0.389	0.270	0.20
Indirect effect(L)	1.071	0.973	0.814	0.639	0.448	0.3
20% returned	0.305	0.306	0.261	0.206	0.144	0.1
increment	0.438	0.415	0.410	0.404	0.400	0.4
	1986-90	1991-95	1996-00	2001-05	2006-10	
					2000-10	
Direct effect	0.215	0.181	0.135	0.114	0.108	
Direct effect Indirect effect(Kp)	0.215 0.174	0.181 0.146	0.135 0.110	0.114 0.091	0.108	
Direct effect (ndirect effect(Kp) (ndirect effect(L)	0.215 0.174 0.247	0.181 0.146 0.208	0.135 0.110 0.154	0.114 0.091 0.132	0.108 0.085 0.125	
Direct effect Indirect effect(Kp) Indirect effect(L) 20% returned	0.215 0.174 0.247 0.084	0.181 0.146 0.208 0.071	0.135 0.110 0.154 0.053	0.114 0.091 0.132 0.045	0.108 0.085 0.125 0.042	

Table 1: Spillover Effects Estimated from a Macroeconomic Translog Production Function

(1) 1990

Direct Effect = Indirect Effect (Capital) = Indirect Effect (Labor)

2010	Private Capital	Public Capital	Direct	Indirect	Effect	20%	Increment
Manufacturing	Capital	Capital	Effect	Capital	Labor	Returned	(70)
Hokkaido	0.084	0.028	0.008	0.005	0.016	0.004	50.8
Tohoku	0.111	0.054	0.018	0.018	0.018	0.007	40.0
Northern Kanto	0.068	0.297	0.064	0.019	0.215	0.047	73.2
Southern Kanto <mark>(TOKYO</mark>)	0.052	0.235	0.054	0.006	0.175	0.036	66.5
Hokuriku	0.077	0.079	0.018	0.001	0.061	0.012	69.1
Tokai	0.093	0.339	0.089	0.057	0.192	0.050	55.9
Kinki	0.056	0.202	0.068	0.020	0.114	0.027	39.5
Chugoku	0.075	0.198	0.059	0.043	0.096	0.028	47.0
Shikoku	0.089	0.073	0.021	0.010	0.042	0.010	50.8
Northern Kyushu	0.093	0.120	0.037	0.028	0.055	0.017	45.5
Southern Kyushu	0.098	0.091	0.028	0.022	0.041	0.013	45.7

Infrastructure Revenue Bond

Regional **Development Agency issues** Revenue Bond (user charges) plus (Spillover effects)

Regional Development Company issues bonds

Buyers of Infrastructure Bond (long term institutional investors)

- 1, Various maturities (10 years, 15 years, 20 years, 30 years)
- 2, Rate of return (user charged +Spillover tax revenues) Infrastructure bonds targeted to banks, insurance companies, Pension funds
 3, Sales channels to individuals (Internet, mobile phone)

Case Study: Southern Tagalog Arterial Road (STAR), Philippines Micro-data

- The Southern Tagalog Arterial Road (STAR) project in Batangas province, Philippines (south of Metro Manila) is a modified Built-Operate-Transfer (BOT) project.
- The 41.9 km STAR tollway was built to improve road linkage between Metro Manila and Batangas City, provide easy access to the Batangas International Port, and thereby accelerate industrial development in Batangas and nearby provinces.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Property	Property	Business	Business	Regulatory	Regulatory	User	User
	tax	tax	tax	tax	fees	fees	charge	charge
Treatment D	1.55535	0.736	1.067	0.438	1.372	0.924	0.990	0.364
	(1.263)	(0.874)	(1.316)	(1.407)	(1.123)	(1.046)	(1.095)	(1.028)
Treatment D	0.421**	-0.083	1.189***	0.991**	0.248***	-0.019	0.408***	-0.010
\times Period _{t+2}	(0.150)	(0.301)	(0.391)	(0.450)	(0.084)	(0.248)	(0.132)	(0.250)
Treatment D	0.447**	0.574***	1.264***	1.502***	0.449**	0.515***	0.317**	0.434**
\times Period _{t+1}	(0.160)	(0.118)	(0.415)	(0.542)	(0.142)	(0.169)	(0.164)	(0.167)
Treatment D	በ	0.570**	1 440***	1 641***	0 604**	0 642***	0 350	0 4 2 2
×	(0.128)	(0.223)	(0.417)	(0.482)	(0.183)	(0.181)	(0.271)	(0.158)
Period _{t0}	(0.120)		(0.417)	(0.402)	(0.100)	(0.101)	(0.271)	(0.100)
Treatment D	1.294**	0.387	2.256**	1.779**	1.318**	0.838*	0.959	0.197
×	(0.674)	(0.728)	(0.957)	(0.470)	(0.649)	(0.448)	(0.714)	(0.560)
	(0.01.)	(*** = *)	(0.000)	(0	(0.0.0)	(01110)	(01111)	(0.000)
I reatment D	1.163*	0.336	2.226**	1.804**	1.482**	1.044**	0.941	0.247
×	(0.645)	(0.594)	(0.971)	(0.531)	(0.634)	(0.413)	(0.704)	(0.531)
	()	· · /	(<i>,</i>	· · /	()	· · /	(<i>'</i>	()
Treatment D	1.702*	0.450	2.785**	2.070***	1.901***	1.238***	1.732***	0.676
×	(0.980)	(0.578)	(1.081)	(0.544)	(0.630)	(0.369)	(0.598)	(0.515)
Period _{t-3}	, , ,	`, <i>`</i> ,	, ,	```´	. ,	· · · ·	· · · ·	· · ·
freatment D	0 570***	1 100	2 100***	2 560***	0 000***	1 500***	0 000***	0 707
X	2.373	1.100	3.420 (0.029)	2.300	2.200	1.509	2.030	0.707
Penou _{t-4,}	(0.900)	(0.756)	(0.920)	(0.350)	(0.503)	(0.452)	(0.007)	(0.745)
forward		2 282**		1 577		1 207		1 0/12*
Construction		(1 172)		(1 196)		(0.855)		(1.042)
	14 69***	_2 499	14 18***	2 230	13 66***	4 597	13 08***	-1 612
Constant	(0.408)	(8 839)	(0.991)	(9 094)	(0.879)	(6,566)	(0.649)	(7.84)
Ν	80	73	79	73	80	73	77	73
R^2	0.29	0.41	0.37	0.44	0.43	0.50	0.26	0.39

Difference-in-Difference Regression: Spillover

Clustered standard errors, corrected for small number of clusters; * Significant at 10%. ** Significant at 5%. *** Significant at 1%.

The Southern Tagalog Arterial Road (STAR Highway), Philippines, Manila Tax Revenues in three cities Yoshino and Pontines (2015) ADBI Discussion paper 549

Table 3.3 Calculated Increase in Business Tax Revenues for the Beneficiary Group Relative to Nonbeneficiary Group 4 (P million)

	t-2	t-1	t	t+1	t+2	t+3	t+4
Lipa City	134.36	173.50	249.70	184.47	191.81	257.35	371.93
Ibaan	5.84	7.04	7.97	6.80	5.46	10.05	12.94
Batangas City	490.90	622.65	652.83	637.89	599.49	742.28	1,208.61
			Comple				

Uzbekistan Railway

Divide regions affected and not affected by railway connection to "Treated group" and "Control group"

GDP

GDP	Term	Connectivity spillover effect	Regional spillover effect	Neighboring spillover effect
Launching	Short	2.83***[4.48]	0.70[0.45]	1.33[1.14]
Effects	Mid	2.5***[6.88]	0.36[0.29]	1.27[1.46]
	Long	2.06***[3.04]	-0.42[-0.29]	2.29**[2.94]
Anticipated	Short	0.19[0.33]	0.85[1.75]	-0.18[-0.20]
ear	Mid	0.31[0.51]	0.64[1.30]	-0.02[-0.03]
$\frac{1}{2}$	Long	0.07[0.13]	-0.006[-0.01]	0.50[0.67]
Postponed E	ffects	1.76*[1.95]	-1.49[-0.72]	2.58*[2.03]
Anticipated	Short	-1.54[-1.66]	1.42[0.78]	-1.32[-0.92]
ears	Mid	0.32[0.44]	0.84[1.42]	0.13[0.13]
2 ye	Long	0.11[0.15]	0.10[0.16]	0.87[1.19]
Postponed E	ffects	-0.14[-0.20]	-1.71[-1.35]	1.05[1.44]

Note: t-values are in parenthesis. t-value measures how many standard errors the coefficient is away from zero.

legend: * p<.1; ** p<.05; *** p<.01

Full length article

An impact evaluation of investment in infrastructure: The case of a railway connection in Uzbekistan☆

Naoyuki Yoshino^a, Umid Abidhadjaev^{b,*}

In the spectrum of economic sectors, the positive effect reflected in regional GDP seems to be driven by approximate increases of 5% in industrial output and of 7% in aggregate services. The effect on agricultural output is moderate relative to other sectors, constituting around 1% for connectivity effects, which is consistent with previous literature on the impacts of public capital.

Japanese Bullet Train

Journal of Infrastructure, Policy and Development (2017) Volume 1 Issue 2, pp.x-x. doi: 10.24294/jipd.v1i2.69

ORIGINAL ARTICLE

Impact of infrastructure on tax revenue: Case study of highspeed train in Japan

Naoyuki Yoshino¹ and Umid Abidhadjaev²

¹ Dean, Asian Development Bank Institute ² Researcher, Asian Development Bank Institute

Impact of Kyushu Shinkansen Rail on CORPORATE TAX revenue during 1st PHASE OF OPERATION period {2004-2010}, mln. JPY (adjusted for CPI, base 1982)

8 2	8 3	8 4	8 5	8 6	8 7	8 8	8 9	9 0	9 1	9 2	9 3	9 4	9 5	9 6	9 7	9 8	9 9	0 0	0 1	0 2	0 3	0 4	0 5	0 6	0 7	0 8	0 9	1 0	1 1	1 2	1 3
																											CON	IPOS	SITIO	N OF	F

CDUIDS

						011	0015
Variable	Regression 1	Regression 2	Regression 3	Regression 4	Regression 5	Group2	Group5
Treatment2	-4772.54 [-0.2]					Kagoshima Kumamoto	Kagoshima Kumamoto
Number of tax						Rumanioto	Fukuoka
payers	5.8952514*	5.8957045* [1 95]	5.896112* [1 95]	5.8953585* [1 95]	5.8629645* [1 91]	Group3	Oita
Treatment3	[1.70]	-15947.8 [-0.87]	[1.70]	[1.70]	[,]	Kagoshima Kumamoto	Miyazaki
Treatment5			-13250.4			Fukuoka	
			[-1.06]				
Treatment7				-6883.09			GroupCon
TreatmentCon				[-0.7]	-28030.8	Group7	Kagoshima
					[-0.65]	Kagoshima	Kumamoto
Constant	-665679	-665418	-665323	-665358	-658553	Kumamoto	Fukuoka
	[-1.35]	[-1.35]	[-1.35]	[-1.35]	[-1.32]	Fukuoka	Usaka
						Olla	нуодо
Ν	799	799	799	799	799	Miyazaki	Okayama
R2	0.269215	0.269281	0.269291	0.269241	0.269779	Saga	Hiroshima
<u>F</u>	1.934589	2.106448	2.074548	2.100607	8.497174	Nagasaki	Yamaguchi

Note: Treatment2 = Time Dummy {1991-2003} x Group2. etc. t-values are in parenthesis. Legend: * p<.1; ** p<.05; *** p<.01. Clustering standard errors are used, allowing for heteroscedasticity and arbitrary autocorrelation within a prefecture, but treating the errors as uncorrelated across prefectures

Impact of Kyushu Shinkansen Rail on CORPORATE TAX revenue during 2nd PHASE OF OPERATION period {2011-2013}, mln. JPY (adjusted for CPI, base 1982)

_																													_
1	1	1	1	1	1	1	1	1	1	1	1 19	1	1	1	1	1	2	2	2	22	2	2	2	2	2	2	2	2	2
9	9	9	9	9	9	9	9	9	9	9	9 94	9	9	9	9	9	0	0	0	0 0	0	0	0	0	0	0	0	0	0
8	8	8	8	8	8	8	8	9	9	9	9	9	9	9	9	9	0	0	0	0 0	0	0	0	0	0	1	1	1	1
2	3	4	5	6	7	8	9	0	1	2	3	5	6	7	8	9	0	1	2	34	5	6	7	8	9	0	1	2	3

COMPOSITION OF GROUPS

Variable	Regression 1	Regression 2	Regression 3	Regression 4	Regression 5	Group2	Group5
Treatment2	72330.012**					Kagoshima	Kagoshima
	[2.2]					Kumamoto	Kumamoto
Number of tax							Fukuoka
payers	5.5277056***	5.5585431***	5.558603***	5.5706545***	5.9640287***	Group3	Oita
T 1 10	[3.13]	[3.14]	[3.14]	[3.14]	[3.07]	Kagoshima	Miyazaki
Treatment3		104664.34^				Kumamoto	,
T 1 15		[2]	00700 / 70**			Fukuoka	
Treatments			82729.673**			T UKUOKU	
- · ·-			[2.1]				
Treatment/				80998.365			GroupCon
TractmentCom				[2.34]	170/00	Group7	Kagoshima
TreatmentCon					[/9032 [1 E0]	Kagoshima	Kumamoto
Constant	560133 00**	572717 20**	571015 97**	576967 56**	[1.30] 6/122 97**	Kumamoto	Fukuoka
Constant	-300133.70	-373747.20	-574245.07	-070007.00	-042130.07	Fukuoka	Osaka
	[-2.07]	[-2.00]	[-2.00]	[-2.09]	[-2.1]	Oita	Hyogo
N	611	611	611	611	611	Miyazaki	Okayama
R2	0.350653	0 352058	0.352144	0.352874	0.364088	Saga	Hiroshima
F	5 062509	5 486197	5 351791	5 431088	16 55518	Nagasaki	Yamaquchi

Note: Treatment2 = Time Dummy {1991-2003} x Group2. etc. t-values are in parenthesis. Legend: * p<.1; ** p<.05; *** p<.01. Clustering standard errors are used, allowing for heteroscedasticity and arbitrary autocorrelation within a prefecture, but treating the errors as uncorrelated across prefectures

Table 2.5b Difference-in-Difference Empirical Results with the Outcome Variable of Personal Income Tax Revenue

Scale of Focus	Affected Group of Prefectures	Construction Period (1991–2003)	Operation Phase 1 (2004–2010)	Operation Phase 2 (2011-2013)
Spillover Effect by Region	Treatment Group 1	25,724	-19,033	42,035**
		(1.32)	(-0.75)	(2.34)
	Treatment Group 2	25,783*	-35,023	66,498**
		(1.93)	(-1.63)	(2.41)
Spillover Effect by Adjacency	Treatment Group 3	10,915	-30,029**	51,675**
		(0.85)	(-2.18)	(2.59)
	Treatment Group 4	7,448	-23,844**	48,690***
		(0.74)	(-2.13)	(3.01)
Spillover Effect by Connectivity	Treatment Group 5	65,186**	-23761	151,360**
		(2.02)	(-0.55)	(2.59)
Number of Observations		1,034	799	611

() = t-value.

Table 2.13 Difference-in-Difference Empirical Results with the Outcome Variable of Corporate Income Tax Revenue, Using Nearest Neighbor Matching Based on the Euclidian Distance between Mean Tax Revenues, 1982–1990 (¥ million)

Scale of Focus	Affected Group of Prefectures	Construction Period (1991–2003)	Operation Phase 1 (2004-2010)	Operation Phase 2 (2011-2013)
Spillover Effect by Region	Treatment	12,132.33***	-6,292.71*	6,629.05
	Group 1	(14.06)	(-2.71)	(2.04)
	Number of Observations	88	68	52
	Treatment	17,473.79**	-13,261.77	18,730.36**
	Group 2	(3.56)	(-1.61)	(2.72)
	Number of Observations	132	102	78
Spillover Effect by Adjacency	Treatment	13,695.24***	-9,138.27	15,128.06**
	Group 3	(3.37)	(-1.61)	(2.93)
	Number of Observations	220	170	130
	Treatment Group 4	10,902.40***	-6,382.728	15,794.54***
		(3.28)	(-1.54)	(3.84)
	Number of Observations	308	238	182
Spillover Effect by Connectivity	Treatment	-46,276.71	-46,440.24*	117,806.95**
	Group 5	(-1.09)	(-1.79)	(2.28)
	Number of Observations	330	255	195

American Journal of Economics 2016, 6(4): 189-199 DOI: 10.5923/j.economics.20160604.02

Explicit and Implicit Analysis of Infrastructure Investment: Theoretical Framework and Empirical Evidence

Naoyuki Yoshino¹, Umid Abidhadjaev^{2,*}

¹Asian Development Bank Institute, Tokyo, Japan ²Keio University, Graduate School of Economics, Tokyo, Japan

Infrastructure & Education

Steady state equation in logarithmic form

$$lny(2010) - lny(1991) = (1 - e^{-\lambda t}) \left(\frac{\theta}{1 - \theta - \beta - \alpha}\right) ln(\varphi) + (1 - e^{-\lambda t}) \left(\frac{\beta}{1 - \theta - \beta - \alpha}\right) ln(1 - \varphi) + (1 - e^{-\lambda t}) \left(\frac{\theta + \beta}{1 - \theta - \beta - \alpha}\right) ln(\tau) + (1 - e^{-\lambda t}) \left(\frac{\alpha}{1 - \theta - \beta - \alpha}\right) ln(s(1 - \tau)) - (1 - e^{-\lambda t}) \frac{\alpha + \beta + \theta}{(1 - \theta - \beta - \alpha)} ln(n + \delta + g) - (1 - e^{-\lambda t}) lny(1991)$$

NOTE:

Context: 44 developing countries, 1991-2010 Methodology: Production function approach Point of novelty and findings:

Study incorporated infrastructure variable into neoclassical growth framework and demonstrated that controlling for share of working age population with university level of education infrastructure investment to GDP ratio constituted statistically significant determinant of accumulated growth rate of GDP per capita

Estimation of The Neoclassical Growth Model with						
Infrastructure Investment						
Dependent variable: log difference GDP per capita in 1991-						
2010						
Regression number	REG.1	REG.2	REG.3			
Variables	Coef.	Coef.	Coef.			
lnY_1991	-0.06	-0.14	-0.14			
	(-0.54)	(-1.35)	(-1.38)			
ln(n+g+d)	-3.09	-5.75	-4.36			
	(-0.59)	(-1.23)	(-0.77)			
ln(Kg)	0.23	0.31	0.53			
	(1.17)	(2.00)	(3.30)			
ln(Sec)			0.00			
			(0.46)			
ln(Kg)xln(Sec)	0.20					
	(1.59)					
ln(Uni)			0.21			
			(2.07)			
ln(Kg)xln(Uni)		0.24				
		(2.76)				
Constant	-0.28	0.56	0.48			
	(-0.33)	(0.69)	(0.57)			
Number of observations	44.00	44.00	44.00			
R-squared	0.21	0.30	0.30			
F-statistic	2.62	4.14	3.29			

Public-Private Partnership (PPP) Give incentives to operating companies SOE Reform

Payoff table for infrastructure operating entity and investors

	Normal Case	Effort Case	
Normal Case	(50, r) Operating Investors Entity	(50, αr) Operating Investors Entity	
Effort Case	(100, r) Operating Investors Entity	(100, αr) Operating Investors Entity	

Springer Enhance regional economy Start up businesses, farmers, SMEs

Naoyuki Yoshino - Sahoko Kaji Editors

Hometown Investment Trust Funds

A Stable Way to Supply Risk Capital

2 Springer

Hometown Investment Trust Funds

A Stable Way to Supply Risk Capital

Yoshino, Naoyuki; Kaji, Sahoko (Eds.) 2013, IX, 98 p. 41 illus.,20 illus. in color

Available Formats:

ebook Hardcover Springer

Japan, Cambodia Vietnam, Peru

Agricultural Funds Beans and Wine

Cambodia and Vietnam

Hometown investment trust funds a new way to finance for Wind power generators, solar power panels etc.

SME =small and medium-sized enterprise.

Source: Yoshino and Taghizadeh-Hesary (2014).

- Nakahigashi, M and Yoshino, N. (2016) "Changes in Economic Effect of Infrastructure and Financing Method", <u>Public Policy Review</u>, Vol.12, No.1.
- Yoshino, Naoyuki and Masaki Nakahigashi (2004) "The Role of Infrastructure in Economic Development", <u>ICFAI Journal of Managerial Economics</u>, 2, pp. 7-24
- Yoshino, N. and Pontines, Victor (2015) "The Highway-Effect on Public Finance: Case of the STAR Highway in the Phillippines", GIE | AAA Special Kick-off Edition, GIE Network publishing.
- Yoshino, Naoyuki and Victor Pontines (2015) "The Highway Effect on Public Finance: Case of the STAR Highway in the Philippines", <u>Asian Development Bank</u> Institute (ADBI) Working Paper No.549.
- Yoshino, Naoyuki and Umid Abidhadjaev (2017), "An impact evaluation of investment in infrastructure: The case of a rail way connection in Uzbekistan". <u>Journal of Asian Economics,</u> 49, 1-11, 2017
- Yoshino, Naoyuki and Umid Abidhadjaev (2017), "Impact of infrastructure on tax revenue: Case study of high-speed train in Japan", <u>Journal of Infrastructure, Policy and Development</u>, Vol.1, Issue 2.
- Yoshino, Naoyuki, Masaki Nakahigashi and Victor Pontines (2017), "Attract Private Financing to Infrastructure Investment by Injecting Spillover Tax Revenues", <u>Nomura</u> <u>Journal of Asian Capital Markets</u>, Spring, Vol.1, No.2.